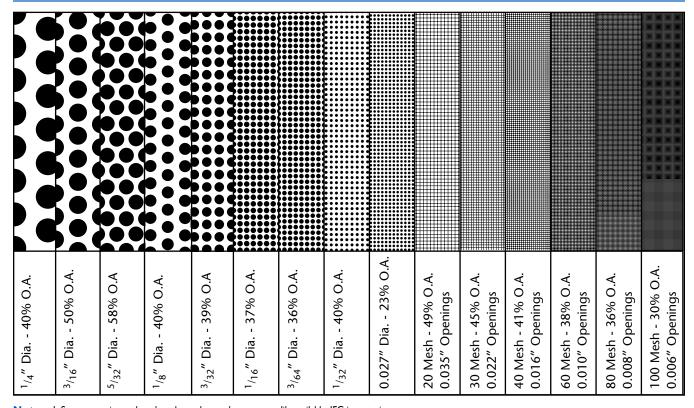


Engineering Data Screen Openings for Strainers

Factors To Consider

Purpose

If the basket strainer is being used for protection rather than direct filtration, IFC's standard screens will suffice in most applications.


Service

With services that require extremely sturdy screens, such as high pressure/ temperature applications or services with high viscosities, IFC recommends that perforated screens without mesh liners be used. If mesh is required to obtain a certain level of filtration, then IFC recommends a trapped perf./ mesh/perf. combination.

Filtration Level

When choosing a perf. or a mesh/perf. combination attention should be given to ensure overstraining does not occur. As a general rule the specified level of filtration should be no smaller than half the size of the particle to be removed. If too fine a filtration is specified the pressure drop through the strainer will increase very rapidly, possibly causing damage to the basket.

Screen Types/Dimensions


Notes: 1. Screen openings other than those shown above are readily available. IFC inventories various mesh sizes as fine as 5 micron and perforated plate as coarse as 1/2" Dia.

- Screens are available in a wide range of materials. IFC inventories various screen material in Carbon Steel, Stainless Steel (304, 316), Alloy 20, Monel 400, Hastalloy C and Titanium Grade 2.
- 3. Custom manufactured screens are available upon request. Please consult factory.

Engineering Data Temporary Strainer Pressure Drop— Liquids

Temporary Strainer Pressure Drop — Liquids (Sizes 6 - 48)

Notes: 1. Pressure drop curves are based on water flow with standard screens.

See page 28 for correction factors to be used with other fluids and/or screen openings.

Engineering Data Correction Factor Charts

Screen Correction Factor Chart (For Non-Standard and Mesh Lined Screens)

*Multiply values obtained from figure 1 thru 6 by the appropriate values shown below

Chart #1

Size	SCREEN OPENINGS								
Range			erforated n Material	Mesh lined standard screens % Screen Material Open Area					
	60%	50%	40%	30%	20%	50%	40%	30%	
1/4" - 11/2"	0.45	0.55	0.7	I	1.15	1.05	1.05	1.2	
2" - 48"	0.65	0.8	1	1.4	2.15	1.05	1.05	1.2	

Notes: I. See page 24 for % Open Areas of IFC inventoried perforated plate.

- 2. Standard screens for sizes ${}^{3}/_{4}$ " to ${}^{1}/_{2}$ " is approximately a 30% open area screen media.
- 3. Standard screens for sizes 2" and larger is approximately a 40% open area screen media.

Example:

Strainer Size: 10'

IFC Model: BI50FSBWI Filtration: 100 Mesh lined $\frac{1}{8}$ " Perf.

Flow rate: 3000 GPM

Service: Water

- A) Using figure 5 the pressure drop is determined to be 2.0 psid with IFC's standard screen.
- B) Looking at page 26 we find that the % Open area of 100 mesh is 30%.
- C) Using chart I we read the correction factor to be 1.2 for 100 mesh lined $\frac{1}{8}$ " perf.
- **D)** Total pressure drop equals $2.0 \times 1.2 = 2.4$ psid clean.

Viscosity and Density Correction Factor Chart									
	Chart #2						Chart #3		
Size Component		Viscosity	Body Loss						
Range	Factor (CF)	Ср	Factor (BF)	Perf alone (PF)	20 Mesh Lined (MF)	, ,	60 to 300 Mesh Lined (MF)		
³ / ₄ " - ¹ / ₂ "	0.25	10	I	1.15	1.3	1.4	1.5		
2" - 48"	0.35	25	1.2	1.25	2	2.2	2.5		
How to Use: 1) Determine the pressure drop (PI) through the strainer with water flow and standard screens. 2) If non-standard screens (i.e. 40 mesh,		100	1.6	1.4	3	4	6.5		
		200	2.2	1.5	4.5	7	11.5		
		500	4.4	1.6	10	15	25		
		1000	8	1.7	15	30	50		
		2000	15.2	1.9	30	60	100		

- 2) If non-standard screens (i.e. 40 mesh, etc.) are being used, apply factors in Chart #I to determine corrected pressure drop (P2).
- 3) Multiply PI or P2 (if used) by the specific gravity of the fluid actually flowing through the strainer to get P3.
- 4) Using Chart #2 multiply P3 by the appropriate Component Factor (CF) to get P4.
- **5)** Let P5 = P3 P4.
- 6) Multiply P4 by the appropriate Body Loss Factor (BF) in Chart #3 to get P6.
- 7) Multiply P5 by the appropriate Screen Loss Factor (PF or MF) in Chart #3 to get P7.

100 cP

8) Total pressure drop P8 = P6 + P7.

Example:

Viscosity:

Strainer Size: 10"

IFC Model: B150FSBW1 Filtration: 100 mesh lined 1/8" perf.

Flow rate: 3000 GPM

Specific Gravity:

A) As shown in the above example, the corrected pressure drop (P2) = 2.4 psid

- **B)** Since S.G. = 1, P3 = P2 = 2.4 psid
- **C)** Using Chart #2 P4 = $0.35 \times P3 = 0.84 \text{ psid}$
- **D)** P5 = 2.4 0.84 = 1.56 psid
- **E)** Using Chart $^{\#}$ 3 P6 = 0.84 x 1.6 = 1.34 psid
- **F)** Again using Chart #3 P7 = $1.56 \times 6.5 = 10.14$ psid
- **G)** Total pressure drop P8 = 1.34 + 10.14 = 11.48 psid clean

Engineering Data Correction Factors For Clogged Screens

Correction Factors For Clogged Screens								
* Multiply values		Chart #4						
% Clogged	10:1	8: I	6: I	4: I	3:1	2:1	1:1	
10%	-	-	-	-	-	-	3.15	
20%	-	-	-	-	-	1.15	3.9	
30%	-	-	-	-	-	1.4	5	
40%	-	-	-	-	-	1.8	6.65	
50%	-	-	-	-	1.25	2.5	9.45	
60%	-	-	-	1.15	1.8	3.7	14.5	
70%	-	-	-	1.75	2.95	6.4	26	
80%	-	1.1	1.75	3.6	6.25	14	58	
90%	2.3	3.45	6	13.5	24	55	-	

Notes: I. See page 35 for the ratio of free area to pipe area for IFC Strainers equipped with standard screens.

$$R = \frac{Ag \times OA}{100Ap}$$

where;

R = Ratio free area to pipe area

Ag = Gross screen area, sq. in. (See page 35)

OA = Open area of screen media, % (See page 24, i.e. $\frac{1}{8}$ " perf. = 40%)

Ap = Nominal area of pipe fitting, sq. in. (See page 35)

Example #1

Strainer Size: 8"

IFC Model: T150FSBW1

Filtration: 1/8" Perf.

Flow rate: 1000 GPM

Service: Water

% Clogged: 20%

A) Using Figure #4 the pressure drop is determined to be 0.9 psid with IFC's standard screen.

- **B)** Looking at page 35 ratio of free area to pipe area for a 8" IFC series T strainer is equal to 1.3:1 (1:1 approx.).
- C) Using Chart #4 we read the correction factor to be 3.9 at 20% clogged.
- **D)** Total pressure drop equals $0.9 \times 3.9 = 3.51$ psid when 20% clogged.

Example #2

Strainer Size: 8"
IFC Model: T150FSBW1
Filtration: $\frac{5}{32}$ " Perf.
Flow rate: 1000 GPM
Service: Water
% Clogged: 60%

A) Using Figure #4 the pressure drop is determined to be 0.9 psid with IFC's standard screen.

- **B)** Looking at page 24 we find that the % Open area (OA) of $\frac{5}{32}$ " Perf. is 58%.
- **C)** Using Chart #I we read the correction factor to be 0.65 for $\frac{5}{32}$ " Perf.
- **D)** Total clean pressure drop equals $0.9 \times 0.65 = 0.59$ psid.
- **E)** Since a non-standard screen is being used, we must calculate the Ratio free area to pipe area.
- **F)** Looking at page 35 we find Ag = 167 in 2, Ap = 50.03 in 2.
- **G)** The ratio free area to pipe area is calculated as 1.9:1. (2:1 approx.)
- H) Using Chart #4 we read the correction factor to be 3.7 at 60% clogged.
- I) Total pressure drop equals $0.59 \times 3.7 = 2.2$ psid when 60% clogged.

^{2.} For screens other than IFC's standard, use the following formula to calculate the ratio free area to pipe area: